Polyfluoroalkylation of Octa-1,7-diene Promoted by Dichlorobis(π-cyclopentadienyl)titanium and Iron Powder

Chang-Ming Hu* and Yao-Ling Qiu
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Lu, Shanghai 200032, China

Abstract

Per(poly)fluoroalkylation of octa-1,7-diene 1 with per(poly)fluoroalkyl iodides 2 or bromides 4, in the presence of catalytic amounts of dichlorobis(π-cyclopentadienyl)titanium(iv) and iron powder, provides $1: 1$ linear adducts 3,5 and/or cyclic products 6 depending on the reactivity of the halides 2 and 4. A radical mechanism is proposed.

It has been reported ${ }^{1}$ that in the presence of the radical initiator azoisobutyronitrile (AIBN), perfluoroalkyl iodides add to α, ω dienes to give $1: 1$ and $2: 1$ linear adducts except with hepta-1,6diene when two isomeric iodomethylcyclopentanes were obtained (Scheme 1).

Scheme 1
In the course of our study on per(poly)fluoroalkylation of carbon-carbon multiple bonds catalysed by transitionmetal complexes, ${ }^{2,3}$ we found a new redox couple-dichlorobis (π-cyclopentadienyl)titanium(iv) and iron-which could initiate the addition of 1,2-dihalogenopolyfluoroalkanes with certain advantages. ${ }^{3}$ Here we report the reactivity of per(poly)fluoroalkyl iodides 2 or bromides 4 towards octa-1,7diene 1 promoted by this system, and also a convenient method for the preparation of a per(poly)fluoroalkylcyclohexane.

Results and Discussion

Generally, a stirred mixture of the diene $\mathbf{1}$, iodide $\mathbf{2}$ or bromide 4, Fe powder and $\mathrm{Ti}\left(\eta^{5}-\mathrm{cp}\right)_{2} \mathrm{Cl}_{2}$ was heated at $50-65^{\circ} \mathrm{C}$ in EtOH or tetrahydrofuran (THF) for $8-40 \mathrm{~h}$ under N_{2} to give high yields of the products.
The reaction of the diene $\mathbf{1}$ with the iodides $\mathbf{2}$ afforded 1:1 linear adducts 3 (Scheme 2 and Table 1). There was no significant solvent effect on the reaction (entries 4 and 5, Table 1).

The reaction of the diene $\mathbf{1}$ with bromides $\mathbf{4}$ gave 1:1 linear

Scheme 2

Table 1 Addition of per(poly)fluoroalkyl iodides 2 to octa-1,7-diene 1 initiated by $\mathrm{Ti}\left(\eta^{5}-\mathrm{cp}\right){ }_{2} \mathrm{Cl}_{2} / \mathrm{Fe}^{a}$

Run	$\begin{aligned} & \text { RI } \\ & \mathbf{2} \end{aligned}$	T/ ${ }^{\circ} \mathrm{C}$	t / h	Adduct	Yield (\%) ${ }^{\text {b }}$
1	a	60	8	3a	87
2	b	60	13	3b	88
3	c	55	10	3c	92
4	d	60	15	3d	90
$5{ }^{\text {c }}$	d	65	14	3d	85
6	e	55	15	3e	91
7	f	50	12	3 f	81

${ }^{a}$ Solvent EtOH unless indicated otherwise. ${ }^{b}$ Isolated yield based on 2.
${ }^{c}$ Solvent THF .
Table 2 Addition of per(poly)fluoroalkyl bromides 4 to octa-1,7-diene 1 initiated by $\mathrm{Ti}\left(\eta^{5}-\mathrm{cp}\right)_{2} \mathrm{Cl}_{2} / \mathrm{Fe}$

No	$\begin{aligned} & \mathrm{RBr} \\ & 4 \end{aligned}$	T/ ${ }^{\circ} \mathrm{C}$	t / h	Yield ${ }^{\text {a }}$ (\%)	5:6 ${ }^{\text {b }}$
1	a	65	40	75^{c}	-:97
2	b	60	20	87	-:97
3	c	60	13	88	-:97
4	d	60	10	80	5:95
5^{d}	d	60	10	81	20:80
6	e	60	15	85	30:70
7	f	50	9	78	35:65

${ }^{a}$ Isolated yield based on 4. ${ }^{b}$ Ratio estimated by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c} 65 \%$ conversion (by ${ }^{19} \mathrm{~F}$ NMR), 6 a was identified as $6 a^{\prime}$ by reduction with $\mathrm{LiAlH}_{4} .{ }^{d}$ Solvent THF.
adducts 5 and/or cyclic products 6 (Scheme 3) depending on the reactivity of the bromide 4. Results are summarised in Table 2.

The less reactive perfluoroalkyl or polyfluoroalkyl bromides 4a-4d, afforded the per(poly)fluoroalkylmethyl cyclohexanes 6a-6d as a cis and trans mixture with the latter predominating; the $\mathrm{CH}-\mathrm{CH}_{2}$ grouping was absent (IR, ${ }^{1} \mathrm{H}$ NMR). The further reduced LiAlH_{4}) product, e.g. $\mathbf{6 b}^{\prime}$ (Scheme 4), gave two isomers (4:1) with a similar GC retention time. GC-MS of compound $\mathbf{6} \mathbf{b}^{\prime}$ demonstrated that the two isomers afforded nearly the same fragmentation and intensities: both of their MS spectra produced M (212), $\mathrm{M}-\mathrm{Me}$ (197), $\mathrm{M}-\mathrm{CH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{H}$ (97) and $\mathrm{M}-\mathrm{Me}-\mathrm{CH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{H}+1$ (83). The $200 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6} \mathbf{b}$ ' showed two doublet signals at $\delta 0.91\left({ }^{3} J_{\mathrm{HH}} 6.6 \mathrm{~Hz}\right)$ and $0.88\left({ }^{3} J_{\mathrm{HH}} 7.2 \mathrm{~Hz}\right)$ with a total integration of 3 H . Such facts confirmed the existence of an exocyclic methyl group.
The reaction of diene 1 with the more reactive polyfluoroalkyl bromides $\mathbf{4 d} \mathbf{d f}$ gave a mixture of linear $\mathbf{5 d}-\mathbf{5 f}$ and cyclic $\mathbf{6 d - 6 f}$ products, with the latter predominating [ca. 65-80\%, estimated

Scheme 5
by ${ }^{1} \mathrm{H}$ NMR; i.e., $\delta_{\mathrm{CHx}} \sim 4.6$ ($\mathrm{X}=\mathrm{I}$ or Br in 3 or 5) and δ $\mathrm{CH}_{2} \mathrm{Br} \sim 3.8$ (in 6)]. When THF was used instead of EtOH, the percentage of the cyclic product $6 d$ decreased from 95 to 80% (entries 4 and 5, Table 2).
The reaction is likely to proceed via a per(poly)fluoroalkyl radical R^{*} intermediate initiated by chlorobis (π-cyclopentadienyl)titanium(III) $\left[\mathrm{Ti}\left(\eta^{5}-\mathrm{cp}\right)_{2} \mathrm{Cl}\right]^{3,4}$ As shown in Scheme 5, addition of \mathbf{R}^{\prime} to diene 1 generated the intermediate \mathbf{A}, which might (a) abstract a halogen atom (iodine or bromine) through an atom-transfer step ${ }^{5}$ to produce products $\mathbf{3}$ or 5 in the case of iodides 2 and the more reactive bromides 4d-4f; or (b) cyclise intramolecularly to produce intermediate \mathbf{B} followed by atomtransfer to give compound 6. These results were attributed to the competition of atom-transfer and cyclisation.

Thus, the present reaction afforded for the first time a direct method for the synthesis of per(poly)fluoroalkylmethyl cyclohexanes.

Experimental

B.p.s are uncorrected. IR spectra were obtained on a Shimadzu IR-440 spectrometer using liquid films. ${ }^{1} \mathrm{H}$ NMR spectra were measured with external TMS standard by a Varian EM-360A spectrometer at 60 MHz or Varian XL-200 spectrometer at $200 \mathrm{MHz} .{ }^{19} \mathrm{~F}$ NMR spectra were measured with external $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ standard by a Varian EM-360L spectrometer at 56.4 MHz. ${ }^{1} \mathrm{H}$ NMR (60 MHz) and ${ }^{19} \mathrm{~F}$ NMR spectra were measured neat in a capillary without additional solvents. Coupling constants are reported in Hz . Mass spectra were recorded with a Finnigan GC-MS-4021 mass spectrometer. For fragments containing Cl and Br , only peaks for the ${ }^{35} \mathrm{Cl}$ and ${ }^{79} \mathrm{Br}$ isotopes are reported.
All chemicals and reagents were of analytical grade and used without further purification.

General Procedure for the Per(poly)fluoroalkylation of 1.-A mixture of iron powder (2.0 mmol), $\mathrm{Ti}\left(\eta^{5}-\mathrm{cp}\right)_{2} \mathrm{Cl}_{2}(0.1 \mathrm{mmol})$, diene $1(5.0 \mathrm{mmol})$ and iodide $2(4.0 \mathrm{mmol})$ or bromide $\mathbf{4}(5 \mathrm{mmol})$ was stirred in EtOH or THF $\left(10 \mathrm{~cm}^{3}\right)$ under N_{2}. The conditions used are listed in Tables 1 and 2. After the reaction was completed, the mixture was poured into aq. $\mathrm{HCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3} ; 10\right)$ and extracted with ether ($3 \times 20 \mathrm{~cm}^{3}$). The combined ether extracts were washed successively with saturated aq. NaHSO_{3}, water, and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Distillation of the residue in vacuo gave the corresponding product.

12-Chloro-9,9,10,10,11,11,12,12-octafluoro-7-iodododec-1ene 3a.-B.p. $95^{\circ} \mathrm{C}(3 \mathrm{mmHg})$ (Found: C, 30.2; H, 2.8; F, 32.4 . $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClF}_{8} \mathrm{I}$ requires C, $30.50 ; \mathrm{H}, 2.99 ; \mathrm{F}, 32.10 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1640\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{H}} 5.10-6.50(3 \mathrm{H}, \mathrm{m}), 4.63(1 \mathrm{H}, \mathrm{m}), 3.13(2 \mathrm{H}$, $\mathrm{td},{ }^{3} J_{\mathrm{HF}} 20,{ }^{3} J_{\mathrm{HH}} 6.0$) and $1.40-2.55(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{F}}-9.0(2 \mathrm{~F}, \mathrm{~s})$, $36.4(2 \mathrm{~F}, \mathrm{~m}), 43.0(2 \mathrm{~F}, \mathrm{~s})$ and $46.2(2 \mathrm{~F}, \mathrm{~s}) ; m / z 471(\mathrm{M}-1$, 0.78%), 345 ($\mathrm{M}-\mathrm{I}, 60.00$), $303\left(\mathrm{M}-\mathrm{I}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}-1\right.$, 43.05), $55\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, 71.23\right)$ and $42\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+\right.$ 1,100).

9,9,10,10,11,11,12,12,12-Nonafluoro-7-iodododec-1-ene 3b-B.p. $88{ }^{\circ} \mathrm{C}(4 \mathrm{mmHg})$ (Found: C, 31.4; H, 2.9; F, 37.6. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{9} \mathrm{I}$ requires C, $31.60 ; \mathrm{H}, 3.09 ; \mathrm{F}, 37.64 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1645$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{H}} 4.91-6.42(3 \mathrm{H}, \mathrm{m}), 4.56\left(1 \mathrm{H}\right.$, quin, $\left.{ }^{3} J_{\mathrm{HH}} 7.0\right), 3.05$ $\left(2 \mathrm{H}, \mathrm{td},{ }^{3} J_{\mathrm{HF}} 18.0,{ }^{3} J_{\mathrm{HH}} 6.0\right)$ and $1.26-2.51(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{F}} 4.9(3 \mathrm{~F}$, s), $37.8(2 \mathrm{~F}, \mathrm{~m}), 48.3(2 \mathrm{~F}, \mathrm{~s})$ and $49.6(2 \mathrm{~F}, \mathrm{~s}) ; \mathrm{m} / \mathrm{z} 455(\mathrm{M}-1$, 0.85%), 329 ($\mathrm{M}-\mathrm{I}, 95.39$), 287 ($\mathrm{M}-\mathrm{I}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}-1$, 81.56) and $42\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+1,100\right)$.

9,10,10,10-Tetrafluoro-7-iodo-9-trifluoromethyldec-1-ene $\mathbf{3 c}$. -B.p. $99^{\circ} \mathrm{C}(18 \mathrm{mmHg})$ (Found: C, $32.5 ; \mathrm{H}, 3.6 ;$ F, 33.6. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~F}_{7} \mathrm{I}$ requires $\mathrm{C}, 32.53 ; \mathrm{H}, 3.47 ; \mathrm{F}, 32.74 \%$; ; $v_{\text {max }} / \mathrm{cm}^{-1}$ $1645\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{H}} 5.05-6.60(3 \mathrm{H}, \mathrm{m}), 4.74(1 \mathrm{H}, \mathrm{m})$, $3.18\left(2 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\mathrm{HF}} 26.0,{ }^{3} J_{\mathrm{HH}} 6.8\right)$ and $1.30-2.65(10 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{F}}-0.3(3 \mathrm{~F}, \mathrm{~s}), 1.3(3 \mathrm{~F}, \mathrm{~s})$ and $109.3(1 \mathrm{~F}, \mathrm{~m}) ; m / z 405(\mathrm{M}-1$, 10.02%), $279 \quad(\mathrm{M}-\mathrm{I}, \quad 33.10)$ and $237 \quad(\mathrm{M}-\mathrm{I}-$ $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}-1,100$)

10-Chloro-9,9,10,10-tetrafluoro-7-iododec-1-ene 3d.-B.p. $70^{\circ} \mathrm{C}(1.5 \mathrm{mmHg})$ (Found: $\mathrm{C}, 31.9 ; \mathrm{H}, 3.6 ; \mathrm{F}, 20.7 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{ClF}_{4} \mathrm{I}$ requires $\mathrm{C}, 32.24 ; \mathrm{H}, 3.79 ; \mathrm{F}, 20.40 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1642$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$; $\delta_{\mathrm{H}} 4.95-6.50(3 \mathrm{H}, \mathrm{m}), 4.65\left(1 \mathrm{H}\right.$, quin, $\left.{ }^{3} J_{\mathrm{HH}} 6.0\right), 3.14$ $\left(2 \mathrm{H}, \mathrm{td},{ }^{3} J_{\mathrm{HF}} 18.0,{ }^{3} J_{\mathrm{HH}} 6.0\right)$ and $1.20-2.70(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{F}}-5.8(2$ $\mathrm{F}, \mathrm{s})$ and $35.8(2 \mathrm{~F}, \mathrm{~m}) ; m / z 373(\mathrm{M}+1,4.60 \%), 246(\mathrm{M}-\mathrm{I}+$ $1,100)$ and $203\left(\mathrm{M}-\mathrm{I}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}-1,33.01\right)$.

10-Bromo-9,9,10,10-tetrafluoro-7-iododec-1-ene 3e.-B.p. $87^{\circ} \mathrm{C}(2 \mathrm{mmHg})$ (Found: C, 28.55; H, 3.3; F, 19.0. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{BrF}_{4} \mathrm{I}$ requires $\mathrm{C}, 28.80 ; \mathrm{H}, 3.38 ; \mathrm{F}, 18.22 \%$); $v_{\max } / \mathrm{cm}^{-1} 1640$ ($\mathrm{CH}=\mathrm{CH}_{2}$); $\delta_{\mathrm{H}} 5.20-6.65(3 \mathrm{H}, \mathrm{m}), 4.77(1 \mathrm{H}, \mathrm{m}), 3.27(2 \mathrm{H}, \mathrm{td}$, $\left.{ }^{3} J_{\mathrm{HF}} 18.0,{ }^{3} J_{\mathrm{HH}} 6.0\right)$ and $1.40-2.75(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{F}}-11.5(2 \mathrm{~F}, \mathrm{~s})$ and 33.3 ($2 \mathrm{~F}, \mathrm{AB}, J_{\mathrm{AB}} 276$); $m / z 417(\mathrm{M}+1,3.42 \%)$, 289 (M $\mathrm{I}, 75.83), 247\left(\mathrm{M}-\mathrm{I}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}-1,38.71\right)$ and 55 $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, 100\right)$.

9,10-Dichloro-9,10,10-trifluoro-7-iododec-1-ene 3f.-B.p. $84^{\circ} \mathrm{C}(1.5 \mathrm{mmHg})$ (Found: C, 29.95; H, 3.5; F, 15.5. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{I}$ requires $\mathrm{C}, 30.87 ; \mathrm{H}, 3.63 ; \mathrm{F}, 14.65 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1645\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{H}} 5.20-6.65(3 \mathrm{H}, \mathrm{m}), 4.85(1 \mathrm{H}, \mathrm{m}), 2.85-3.80$ $(2 \mathrm{H}, \mathrm{m})$ and $1.50-2.80(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{F}}-10.2(2 \mathrm{~F}, \mathrm{~s})$ and $41.5(1 \mathrm{~F}$, d, $J 218$); $m / z 389(\mathrm{M}+1,1.58 \%$), 261 (M - I, 61.11), 219 $\left(\mathrm{M}-\mathrm{I}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+1,52.49\right)$ and $42\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+\right.$ 1,100).
(cis/trans)-1-Methyl-2-(2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-
heptyl) cyclohexane $6 \mathbf{a}^{\prime} .-\mathrm{B} . \mathrm{p} .66^{\circ} \mathrm{C}(3 \mathrm{mmHg})$ (Found: $\mathrm{C}, 39.4$; $\mathrm{H}, 4.0 ; \mathrm{F}, 57.1 . \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{13}$ requires $\mathrm{C}, 39.08 ; \mathrm{H}, 3.51 ; \mathrm{F}, 57.41 \%$);
$\delta_{\mathrm{H}} 1.16-2.55(12 \mathrm{H}, \mathrm{m}), 1.04$ and $0.94\left(3 \mathrm{H}\right.$, both d, $\left.{ }^{3} J_{\mathrm{HH}} 7.0\right)$; δ_{F} 3.4 (3 F, s), 36.6 ($2 \mathrm{~F}, \mathrm{~m}$), 45.3 ($2 \mathrm{~F}, \mathrm{~s}$), 46.5 ($2 \mathrm{~F}, \mathrm{~s}$), 47.1 (2 F , s) and $50.0(2 \mathrm{~F}, \mathrm{~s}) ; \boldsymbol{m} / \mathrm{z} 430(\mathrm{M}, 72.52 \%), 415$ (M - Me, 17.06), 97 $\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{13}, 90.37\right)$ and $83\left(\mathrm{M}-\mathrm{Me}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{~F}_{13}+1\right.$, 22.77).
(cis/trans)-1-Bromomethyl-2-(3-bromo-2,2,3,3-tetrafluoropropyl) cyclohexane 6b.-B.p. $86^{\circ} \mathrm{C}(2 \mathrm{mmHg})$ (Found: C, $33.0 ; \mathrm{H}$, 3.8; F , 21.3. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~F}_{4}$ requires C, 32.46; $\mathrm{H}, 3.81 ; \mathrm{F}, 20.54 \%$); $\delta_{\mathrm{H}} 3.55-3.88(2 \mathrm{H}, \mathrm{m})$ and $1.37-2.78(12 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{F}}-11.8(2 \mathrm{~F}, \mathrm{~s})$ and $33.2(2 \mathrm{~F}, \mathrm{~m}) ; m / z 369(\mathrm{M}+1,2.85 \%), 289(\mathrm{M}-\mathrm{Br}, 100)$ and $275\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{Br}\right)$.
(cis/trans)-1-Methyl-2-(2,2,3,3-tetrafluoropropyl)cyclohexane $6 \mathbf{b}^{\prime}$.-B.p. $83^{\circ} \mathrm{C}(42 \mathrm{mmHg})$ (Found: C, $56.5 ; \mathrm{H}, 7.6$; F, 35.8. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~F}_{4}$ requires C, $56.59 ; \mathrm{H}, 7.60 ; \mathrm{F}, 35.81 \%$); $\delta_{\mathrm{H}}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 5.67\left(1 \mathrm{H}, \mathrm{tt},{ }^{2} J_{\mathrm{HF}} 56.0,{ }^{3} J_{\mathrm{HF}} 3.0\right), 1.00-2.40(12 \mathrm{H}, \mathrm{m})$, $0.91\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}} 6.6\right)$ and $0.88\left(3 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}} 7.2\right) ; \delta_{\mathrm{F}} 37.8(2 \mathrm{~F}, \mathrm{~m})$ and 58.6 ($2 \mathrm{~F}, \mathrm{~d},{ }^{2} J_{\mathrm{HF}} 56.0$); $m / z 212$ (M, 17.30%), 197 (M - Me, 4.85), $97\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{H}, 30.81\right)$ and $83(\mathrm{M}-\mathrm{Me}-$ $\mathrm{CH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{H}+1,13.13$).
(cis/trans)-1-Bromomethyl-2-(3-bromo-2-trifluoromethyl-2,3,-3-trifluoropropyl)cyclohexane 6 c.-B.p. $84^{\circ} \mathrm{C}(1.5 \mathrm{mmHg})$ (Found: C, 31.4; H, 3.4; F, 28.6. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~F}_{6}$ requires $\mathrm{C}, 31.46$; $\mathrm{H}, 3.36 ; \mathrm{F}, 27.14 \%$); $\delta_{\mathrm{H}} 3.80(2 \mathrm{H}, \mathrm{m})$ and $1.40-2.90(12 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{F}}$ $-19.5(2 \mathrm{~F}, \mathrm{~m}),-3.3(3 \mathrm{~F}, \mathrm{~m})$ and $98.5(1 \mathrm{~F}, \mathrm{~m}) ; m / z 419(\mathrm{M}+1$, 1.26%), 339 ($\mathrm{M}-\mathrm{Br}, 100$), $325\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{Br}, 35.24\right)$.
(cis/trans)-1-Bromomethyl-2-(2-bromo-2,3,3,3-tetrafluoropropyl) cyclohexane 6d.-B.p. $78{ }^{\circ} \mathrm{C}(1 \mathrm{mmHg})$ (Found: C, $32.0 ; \mathrm{H}$, 3.9; F , 21.15. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~F}_{4}$ requires $\mathrm{C}, 32.46 ; \mathrm{H}, 3.81 ; \mathrm{F}$, 20.54%); $\delta_{\mathrm{H}} 3.65-3.96(2 \mathrm{H}, \mathrm{m})$ and $1.31-3.12(12 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{F}} 4.0$ ($3 \mathrm{~F}, \mathrm{~s}$) and $46.7(1 \mathrm{~F}, \mathrm{~m}) ; m / z 369(\mathrm{M}+1,1.01 \%)$, $289(\mathrm{M}-\mathrm{Br}$, $100)$ and $275\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{Br}, 18.51\right)$.

7,10-Dibromo-9-(chlorodifluoromethyl)-9,10,10-trifluorodec-1-ene 5e and 1-Bromomethyl-2-[3-bromo-2-(chlorodifluoro-methyl)-2,3,3-triftuoropropyl]cyclohexane 6e.-B.p. $85^{\circ} \mathrm{C}(0.5$ mmHg) (Found: $\mathrm{C}, 30.3$; $\mathrm{H}, 3.2 ; \mathrm{F}$, 22.6. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{ClF}_{5}$ requires $\mathrm{C}, 30.27 ; \mathrm{H}, 3.23 ; \mathrm{F}, 21.76 \%$); $\delta_{\mathrm{H}} 4.75[\mathrm{~m}, \mathrm{CHBr}(5 \mathrm{ee})]$ and $3.80\left[\mathrm{~m}, \mathrm{CH}_{2} \mathrm{Br}(6 \mathrm{e})\right] ; \delta_{\mathrm{F}}-21.0(2 \mathrm{~F}, \mathrm{~m}),-16.1(2 \mathrm{~F}, \mathrm{~m})$ and 90.5 ($1 \mathrm{~F}, \mathrm{~m}$); $m / z 434(\mathrm{M}, 3.16 \%$), 355 ($\mathrm{M}-\mathrm{Br}, 100$), 341 ($\mathrm{M}-$ $\left.\mathrm{CH}_{2} \mathrm{Br}, 21.83\right)$ and $313\left(\mathrm{M}-\mathrm{Br}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+1,24.04\right)$.

7,10-Dibromo-9-chloro-9.10,10-trifluorodec-1-ene 5f and 1-Bromomethyl-2-(3-bromo-2-chloro-2,3,3-trifluoropropyl)cyclohexane 6f.-B.p. $93^{\circ} \mathrm{C}(1 \mathrm{mmHg})$ (Found: C, 30.6; H, 3.6; F, 15.15. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{ClF}_{3}$ requires $\mathrm{C}, 31.08 ; \mathrm{H}, 3.65 ; \mathrm{F}, 14.75 \%$); δ_{H} $4.76[\mathrm{~m}, \mathrm{CHBr}(5 f)]$ and $3.73\left[\mathrm{~m}, \mathrm{CH}_{2} \mathrm{Br}(6 f)\right] ; \delta_{\mathrm{F}}(5 f)-16.0$ ($2 \mathrm{~F}, \mathrm{~s}$) and $38.0(1 \mathrm{~F}, \mathrm{~m})$; $(6 \mathrm{f})-16.7(2 \mathrm{~F}, \mathrm{~s})$ and $39.8(1 \mathrm{~F}, \mathrm{~m})$; $m / z 385(\mathrm{M}+1,1.93 \%), 305(\mathrm{M}-\mathrm{Br}, 94.32)$ and 95 $\left[\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}=\mathrm{CH}_{2}-1,100\right]$.

References

1 N. O. Brace, J. Am. Chem. Soc., 1964, 86, 523; J. Org. Chem., 1966, 31, 2879; 1967, 32, 2711; 1973, 38, 3167.
2 C.-M. Hu and Y.-L. Qiu, Tetrahedron Lett., 1991, 32, 4001.
3 C.-M. Hu and Y.-L. Qiu, J. Fluorine Chem., 1991, 55, 109.
4 For examples of the radical reaction initiated by $\mathrm{Ti}\left(\eta^{5}-\mathrm{cp}\right)_{2} \mathrm{Cl}$, see W . A. Nugent and T. V. Rajan-Babu, J. Am. Chem. Soc., 1988, 110, 8561; T. V. Rajan-Babu and W. A. Nugent, J. Am. Chem. Soc., 1989, 111, 4525.

5 For recent reviews of radical chemistry, see D. P. Curran, Synthesis, 1988, 417 (part 1) and 419 (part 2); B. Giese, Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds, Pergamon Press, Oxford, 1986.

Paper 2/01490D
Received 20th March 1992
Accepted 2nd April 1992

